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• Fermi acceleration (Monte Carlo simulations are not self- 

  consistent; particles are crossing the shock surface many  

  times and remain accelerated, the strengths of turbulent  

  magnetic fields are assumed), Some simulations exhibit 

  Fermi acceleration (Spitkovsky 2008) 

• The strength of magnetic fields is estimated based on   

  equipartition - magnetic field energy is comparable to the  

 thermal energy): εB ~ u(T) 

• The distribution of accelerated electrons is approximated  
   by the power law (F(γ) = γ−p; p = 2.2?) (εe) 

• Synchrotron emission is calculated based on p and εB 

• There are many assumptions in this calculation! 

Present theory of  Synchrotron radiation 
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Synchrotron Emission: radiation from accelerated 

adapted by  
S. Kobayashi 

BM, PL, BB 
by talk by 
S. Guiriec  

Talks by G. 
Vianello and 
D. Guetta 



• Electrons are accelerated by the electromagnetic field  
   generated by the Weibel instability and KKHI (without  
   the assumption used in test-particle simulations for  
   Fermi acceleration) 
• Radiation is calculated using the particle trajectory in  
   the self-consistent turbulent magnetic field 
• This calculation includes Jitter radiation (Medvedev  
   2000, 2006) which is different from standard  
   synchrotron emission 
• Radiation from electrons in our simulation is reported  
   in Nishikawa et al. Adv. Sci. Rev, 47, 1434, 2011. 

Self-consistent calculation of radiation 
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Radiation from particles in collisionless shock 

New approach: Calculate radiation 
from integrating position, velocity, 
and acceleration of ensemble of 
particles (electrons and positrons) 

Hededal, Thesis 2005 (astro-ph/0506559)                         
Nishikawa et al. 2008 (astro-ph/0802.2558)             
Sironi & Spitkovsky, 2009, ApJ                               
Martins et al. 2009, Proc. of SPIE Vol. 7359    
Frederiksen et al. 2010, ApJL 



Shock formation, forward shock, reverse shock!

(a) electron density and  
(b) electromagnetic !
field energy (εB, εE)  
divided by the total !
kinetic energy at  
t = 3250ωpe

-1  !

vcd=0.76c!

jet!

ambient!

vrs=0.56c!
total!

εE!
εB!

(Nishikawa et al. ApJ, 698, L10, 2009)!

vjf=0.996c!(c)!

Time evolution of the total electron  
density. The velocity of the jet front is ~c,  
the predicted contact discontinuity speed  
is 0.76c, and the velocity of the reverse 
shock is 0.56c. 



Synthetic spectra with different Lorentz factors  
   with cold and warm thermal temperatures 

Figure a shows the spectra for the cases of γ = 10, 20, 50, 100, and 300  
with cold (thin lines) and warm (thick lines) electron jets. Fig. b shows  
modeled Fermi spectra in νF units at early (a) to late (e) times  
(Abdo et al. 2009). The red lines indicate slope in νF � 1 
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System size: 8000 × 240 × 240 
Electron-positron:  γ = 15  

Radiation in a larger system   

(b) 200      ≤ t ≤ 275 ω pe
−1 ω pe

−1

Sampled particles 115,200 

(a)150      ≤ t ≤ 225 ω pe
−1 ω pe

−1

Nishikawa et al. in progress 



fast collisionless 
reconnection 

Reconnection switch concept:  
Collapsar model or some  
other system produces a jet  
(with opening half-angle θj)  
corresponding to a generalized 
stripped wind containing many  
field reversals that develop  
into dissipative current sheets  
(McKinney and Uzdensky,  
2012, MNRAS,  419, 573). 
This reconnection needs to 
be investigated by resistive  
RMHD, which is in progress 
within our research effort. 

Talk by  
A. Tchekhovskov 



Relativistic jet with  
helical magnetic field,  
which leads to the  
kink instability and  
subsequent  
reconnection, can be  
simulated using  
resistive relativistic  
MHD (this simulation  
was performed with  
ideal RMHD code). 

(Mizuno et al. ApJ, 734:19 (18pp), 2011)!

3-D kink instability with helical magnetic field 



Choi, Min, KN, 2012 (in progress)!

Simulations with magnetic field in jets!
no magnetic field! anti-parallel magnetic field!

Snapshots for unmagnetized  
ambient plasma (left column) and  
anti-parallel magnetic field in the  
ambient plasma (right column) at  
t = 1450 
(Choi, Min, and Nishikawa, 2012).  
The averaged values of electron  
density (a) and (b), magnetic field  
(c) and (d), electric field (e) and (f),  
phase space of electrons (g) and (h),  
and phase space of ions (i) and (j).  
Reconnection occurs for the case of  
anti- parallel magnetic fields and is  
indicated by the positive Ey  
component in (f).  

ω pe
−1

ω pe
−1



Simulations of Kinetic Kelvin-Helmholtz instability  
                 with counter-streaming flows  

The left panel shows magnetic field lines generated in the relativistic shear scenario  
of Alves et al. (2012). The right panel shows the electron density in orange (blue)  
of the plasma that flows in the positive (negative) x1 direction. In this panel darker  
regions in the color map indicate high electron density, whereas lighter regions  
indicate low electron density.  



Simulations of KHI with core and sheath jets 

!
Mizuno, Hardee & Nishikawa, ApJ, 662, 835, 2007  

RMHD, no wind ω=0.93, time=60.0 

case of Vtheath = 0 



Study of the relativistic velocity shear interface KKHI instability 
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Note that eq.(17) is identical to eq.(14) and contains no magnetic field terms. Thus, the unstable

electrostatic solution associated with a equal density counter-streams on either side of a shear

surface is identical to the unstable electrostatic solution associated with interpenetrating equal

density beams and is just the classic electrostatic two-stream instability.

The transverse electric field components, i.e., transverse to the wavevector, magnetic field and

streaming direction, had the following dispersion relation (eq. 3.34 in the dissertation)

−ω2 + k2c2 −
γ2ω2

p

2

[

(ω − kV )2

−(kV − ω)2 + Ω2
γ
+

(ω + kV )2

−(kV + ω)2 + Ω2
γ

]

= 0 , (18)

where Ωγ ≡ |eB/γmc|. In the absence of a magnetic field this dispersion relation can be readily

seen to become

ω2 = k2c2 + γ2ω2
p . (19)

Here we recover the solution for transverse E&M waves from eq.(14). Provided we adopt eq. (18)

as the transverse wave dispersion relation associated with a velocity shear surface we can use it to

predict the effect of parallel magnetic fields on KKHI. We will look at this case later.

3. Unequal densities with (A) counter-streaming and (B) unequal velocities

We now return to the general dispersion relation, eq.(8):

(k2c2 + γ2−ω
2
p− − ω2)1/2(kV− − ω)2[(kV+ − ω)2 − ω2

p+]

+(k2c2 + γ2+ω
2
p+ − ω2)1/2(kV+ − ω)2[(kV− − ω)2 − ω2

p−] = 0 .

A: Unequal densities with counter-streaming velocities

This is the case in Alves et al. (2012) where we set V− = −V+ = −V and recall that ω2
p± =

4πn±e2/γ3±m. I note before I start that there is a typo in the text in Alves et al. just

below their dispersion relation [eq.(1)] where their k′ ≡ kc/ωp+ should be k′ ≡ kV/ωp+.

Additionally, I will show that the leading terms in their square roots are incorrect,

i.e., should contain Lorentz factors when the counter-streaming flows are relativistic.

With counter-streaming equal velocities but unequal densities we can write the dispersion relation

as

(k2c2 + γ2ω2
p− − ω2)1/2(ω + kV )2[(ω − kV )2 − ω2

p+]

+(k2c2 + γ2ω2
p+ − ω2)1/2(ω − kV )2[(ω + kV )2 − ω2

p−] = 0 , (20)

and this can be rewritten as

(k2c2 + γ2ω2
p− − ω2)1/2[(ω2 − k2V 2)2 − (ω + kV )2ω2

p+]

+(k2c2 + γ2ω2
p+ − ω2)1/2[(ω2 − k2V 2)2 − (ω − kV )2ω2

p−] = 0 . (21)

Study of the relativistic velocity shear interface KKHI instability

1. The general dispersion relation

I will use initially use subscripts of “+” and “-” to indicate a “jet” at x > 0 and ambient at

x < 0 with flow in the y direction with a velocity shear surface at x = 0. Here we are infinite in

the z-direction.

I begin with the Eigenmode equation from Gruzinov but now generalized to allow complex

frequencies, allow different number densities and flow velocities on either side of the contact dis-

continuity, and correct a term that was dimensionally wrong in his denominator, i.e., k → kc. The

general Eigenmode equation is:

[

−(kV − ω)2 + ω2
p

−(kV − ω)2(k2c2 + γ2ω2
p − ω2)

E
′

y

]′

=
−(kV − ω)2 + ω2

p

−(kV − ω)2
Ey , (1)

where ωp ≡ 4πne2/γ3m, perturbations are of the form ei(ky−ωt) and the wavevector, k, is along the

flow direction, and the prime denotes the derivative in the x-direction.

Within each medium on either side of the shear surface at x = 0 the Eigenmode equation can

be written as:
[

−(kV+ − ω)2 + ω2
p+

−(kV+ − ω)2(k2c2 + γ2+ω
2
p+ − ω2)

E
′

y+

]′

=
−(kV+ − ω)2 + ω2

p+

−(kV+ − ω)2
Ey+ for x > 0 , (2)

and
[

−(kV− − ω)2 + ω2
p−

−(kV− − ω)2(k2c2 + γ2−ω
2
p− − ω2)

E
′

y−

]′

=
−(kV− − ω)2 + ω2

p−

−(kV− − ω)2
Ey− for x < 0 , (3)

where conditions are assumed to be uniform on either side of the shear surface. These two equations

provide the behavior of the perturbations on either side of the shear surface, that is for

Ey(x, y, t) = Ey(x)e
i(ky−ωt)

we have that
d2Ey+

dx2
= (k2c2 + γ2+ω

2
p+ − ω2)Ey+ for x > 0 , (4)

and
d2Ey−

dx2
= (k2c2 + γ2−ω

2
p− − ω2)Ey− for x < 0 . (5)

Solutions to these equations are given by

Ey(x, y, t) = Ey0e
∓A±xei(ky−ωt) ,

with A± = (k2c2 + γ2±ω
2
p± − ω2)1/2 and Ey(x) = Ey0e−A+x for x > 0 and Ey(x) = Ey0e+A−x for

x < 0, i.e., Ey(x) declines exponentially away from the shear surface, and we have that Ey+(x =

0) = Ey−(x = 0) = Ey0 at the shear surface.

Study of the relativistic velocity shear interface KKHI instability

1. The general dispersion relation

I will use initially use subscripts of “+” and “-” to indicate a “jet” at x > 0 and ambient at

x < 0 with flow in the y direction with a velocity shear surface at x = 0. Here we are infinite in

the z-direction.

I begin with the Eigenmode equation from Gruzinov but now generalized to allow complex

frequencies, allow different number densities and flow velocities on either side of the contact dis-

continuity, and correct a term that was dimensionally wrong in his denominator, i.e., k → kc. The

general Eigenmode equation is:

[

−(kV − ω)2 + ω2
p

−(kV − ω)2(k2c2 + γ2ω2
p − ω2)

E
′

y

]′

=
−(kV − ω)2 + ω2

p

−(kV − ω)2
Ey , (1)

where ωp ≡ 4πne2/γ3m, perturbations are of the form ei(ky−ωt) and the wavevector, k, is along the

flow direction, and the prime denotes the derivative in the x-direction.

Within each medium on either side of the shear surface at x = 0 the Eigenmode equation can

be written as:
[

−(kV+ − ω)2 + ω2
p+

−(kV+ − ω)2(k2c2 + γ2+ω
2
p+ − ω2)

E
′

y+

]′

=
−(kV+ − ω)2 + ω2

p+

−(kV+ − ω)2
Ey+ for x > 0 , (2)

and
[

−(kV− − ω)2 + ω2
p−

−(kV− − ω)2(k2c2 + γ2−ω
2
p− − ω2)

E
′

y−

]′

=
−(kV− − ω)2 + ω2

p−

−(kV− − ω)2
Ey− for x < 0 , (3)

where conditions are assumed to be uniform on either side of the shear surface. These two equations

provide the behavior of the perturbations on either side of the shear surface, that is for

Ey(x, y, t) = Ey(x)e
i(ky−ωt)

we have that
d2Ey+

dx2
= (k2c2 + γ2+ω

2
p+ − ω2)Ey+ for x > 0 , (4)

and
d2Ey−

dx2
= (k2c2 + γ2−ω

2
p− − ω2)Ey− for x < 0 . (5)

Solutions to these equations are given by

Ey(x, y, t) = Ey0e
∓A±xei(ky−ωt) ,

with A± = (k2c2 + γ2±ω
2
p± − ω2)1/2 and Ey(x) = Ey0e−A+x for x > 0 and Ey(x) = Ey0e+A−x for

x < 0, i.e., Ey(x) declines exponentially away from the shear surface, and we have that Ey+(x =

0) = Ey−(x = 0) = Ey0 at the shear surface.

Low-frequency limit (V-=0) 
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Let us now normalize by ωp+ and define ω′ = ω/ωp+ and k′ ≡ kV/ωp+ and write in the form used

by Alves et al. to find

(γ2
n−

n+
+ k′2/β2 − ω′2)1/2

[

(ω′ + k′)2 − (ω′2 − k′2)2
]

+(γ2 + k′2/β2 − ω′2)1/2
[

n−

n+
(ω′ − k′)2 − (ω′2 − k′2)2

]

= 0 . (22)

In Alves et al. γ2(n−/n+) and γ2 in the leading square roots were written as (n−/n+)

and 1, respectively, and will not give the correct solution for transverse E&M waves

for equal density relativistic counter-streaming flows. Their dispersion relation [eq.(1)]

will also not give the correct solutions for unequal density relativistic counter-streaming

flows.

B: Unequal densities and velocities

Here we will specialize to cases with V− ≥ 0 which allow motion of the ambient, e.g., the

“needles in a jet” or “jet in a jet” scenarios allowing for high speed features moving through

an already relativistic ambient flow. In what follows we change the notation and set njt = n+,

nam = n−, Vjt = V+, Vam = V− ≥ 0, γjt = γ+ and γam = γ−. With this notational change the

general dispersion relation can be written as

(k2c2 + γ2amω2
p,am − ω2)1/2(ω − kVam)2[(ω − kVjt)

2 − ω2
p,jt]

+(k2c2 + γ2jtω
2
p,jt − ω2)1/2(ω − kVjt)

2[(ω − kVam)2 − ω2
p,am] = 0 . (23)

Analytic solutions are not available except in the low (ω << ωp and kc << ωp) and high frequency

(ω >> ωp and kc >> ωp) limits.

The low frequency limit

In the low frequency limit the dispersion relation can be written as

γamωp,amω
2
p,jt(ω − kVam)2 + γjtωp,jtω

2
p,am(ω − kVjt)

2 ∼ 0 . (24)

which yields the quadratic equation

(γamωp,jt+ γjtωp,am)ω
2− 2(γamωp,jtkVam+ γjtωp,amkVjt)ω+(γamωp,jtk

2V 2
am+ γjtωp,amk2V 2

jt) ∼ 0 .

(25)

with solutions given by

ω ∼
(γamωp,jtkVam + γjtωp,amkVjt)

(γamωp,jt + γjtωp,am)
± i

(γamωp,jtγjtωp,am)1/2

(γamωp,jt + γjtωp,am)
k(Vjt − Vam), (26)

In eq.(25) the real part gives the phase velocity and the imaginary part gives the temporal growth

rate and directly shows the dependence of the growth rate on the velocity difference across the

shear surface. In the case where Vam = 0

ω ∼
(γjtωp,am/ωp,jt)

(1 + γjtωp,am/ωp,jt)
kVjt ± i

(γjtωp,am/ωp,jt)1/2

(1 + γjtωp,am/ωp,jt)
kVjt. (27)

Here it is easy to see that the phase velocity increases and the temporal growth rate decreases as

γjtωp,am/ωp,jt = γ5/2jt nam/njt increases. Recall that ω2
p,jt = 4πnjte2/γ3jtm.



New KKHI simulations with core and sheath jets in slab geometry  

Magnetic field structures gen- 
erated by shearing relativistic  
electron-ion flows with γ = 15  
with stationary sheath plasmas  
The magnetic field intensity of 
By is plotted in the y − z plane  
at the center of the box (a) (jet 
out of the plane), in the x− z  
plane at the center of the box 
(d) (jet along +x-direction  
 indicated by the arrow). Fig. b  
     shows the magnetic finds 
      By (red), Bx (black), and Bz  
      (blue). Fig. c shows the x-  
      component of the current.       
      Positive currents are  
       stronger than negative  
       currents, therefore the By  
       components are generated  
       as shown in Fig. b. 

Nishikawa et al. 
    in preparation 



 Summary of Results 
•  The Weibel instability creates filamented currents and density  
   structure along the propagation axis of  the jet.  
•  The growth rate of  the Weibel instability depends on the Lorentz  
   factor, composition, and strength and direction of ambient B fields.  
• The presence of ions in the ambient plasma enhances the strength of  
   the generated magnetic fields due to the excitation of the ion Weibel  
   instability.  
•  This enhanced magnetic field with electron-ion ambient plasma may 
   be the cause of large upstream magnetic fields in GRB shocks. 
•  In order to understand the complex shock dynamics of relativistic  
   jets, further simulations with additional physical mechanisms such  
   as radiation loss and inverse Compton scattering  are necessary. 
•  Spectra from two electrons were calculated for different conditions. 
•  The magnetic fields created by the Weibel instability generate  
   highly inhomogeneous magnetic fields, which are responsible for  
   Jitter radiation (Medvedev, 2000, 2006; Fleishman 2006; Frederiksen et al.  
   2010, Medvedev et al 2011). 
•  Our new numerical approach of calculating radiation from electrons  
   based on a self-consistent simulations provides more realistic spectra 
   including jitter radiation.  



                    Future plans  
•  Further simulations with a systematic parameter  
      survey will be performed in order to understand  
      shock dynamics including reconnection and KKHI.  
•  Further simulations will be performed to calculate  
      self-consistent radiation including time evolution  
      of spectrum and time variability using larger systems. 
•  Investigate radiation processes from the accelerated  
      electrons in turbulent magnetic fields and compare  
      with observations (GRBs, SNRs, AGNs, etc).   
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Radiation in a small system   

without iteration 

with iteration 



reverse shock!

moving contact 
discontinuity (CD)!

fixed 
CD!

0

Density!

n2/γ0n1=3.13!

βs = 0.417

βc = 0.47

4
3 < Γ = 32 <

5
3

γ0 = 15!

(Spitkovsky, ApJ, 682:L5, 2008 (adapted))!

(Nishikawa et al. 2009)!
′γ cd = 5.60

nsj / ′γ cdnj = 3.36

Shock velocity and structure based on  
1-D HD analysis!

forward shock 


